## Pearson Edexcel

Mark Scheme (Results)

## January 2021

Pearson Edexcel International Advanced Level In Statistics 1
(WST01/01)

## Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

## Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2021
Publications Code WST01_01_2101_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

## General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- $\quad$ All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.


## EDEXCEL IAL MATHEMATICS

## General I nstructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of $M$ marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
-     * The answer is printed on the paper
- $\quad$ The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark the last most complete solution.

7. Ignore wrong working or incorrect statements following a correct answer.

| Question <br> Number | Scheme ${ }^{\text {arks }}$ |
| :---: | :---: |
| 1 (a) <br> (b) <br> (c) |  |
|  | Notes |
| (a) (b) (c) | B1 for 0.4 or exact equivalent <br> M1 for a correct sum or expression <br> A1 for 0.7 or an exact equivalent. Correct answer with no incorrect working $2 / 2$ <br> M1 for $\frac{\mathrm{P}\left(A \cap B^{\prime}\right)}{\mathrm{P}\left(B^{\prime}\right)}$ and $\frac{p}{" 0.4 "}$ where $0<p<" 0.4 "$ or just $\frac{0.15}{" 0.4 "}$ <br> Condone one missing "P" e.g. $\frac{\mathrm{P}\left(A \cap B^{\prime}\right)}{\left(B^{\prime}\right)}$ but NOT $\mathrm{P}\left(\frac{A \cap B^{\prime}}{B^{\prime}}\right)$ or $\frac{A \cap B^{\prime}}{B^{\prime}}$ but of course they may score this M mark from $\frac{0.15}{" 0.4 "}$ <br> A1 for $\frac{3}{8}$ or exact equivalent e.g. 0.375 but $\frac{0.15}{0.4}$ is A0 Correct answer with no incorrect working $2 / 2$ |





| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 4 (a) | (Discrete) uniform (distribution) | B1 |
| (b)(i) | [By symmetry] $\mathrm{E}(X)=\underline{\mathbf{1 3}}$ | B1 ${ }_{\text {(1) }}$ |
| (ii) | $\frac{10^{2}+12^{2}+14^{2}+16^{2}}{4}-13^{2} \text { or } \frac{696}{4}-169 \text { or } 174-169$ | M1 |
|  | $=\underline{5}$ | A1 |
| (c)(i) | $\mathrm{E}(Y)=\frac{1}{30}(1 \times 4+2 \times 9+3 \times 6+4 \times 5+5 \times 6) ; \quad=\frac{90}{30}=\underline{\mathbf{3}}$ | $\mathrm{M} 1 ; \mathrm{A} 1^{(2)}$ <br> (2) |
| (ii) | $\mathrm{E}\left(Y^{2}\right)=\frac{1}{30}\left(1^{2} \times 4+2^{2} \times 9+3^{2} \times 6+4^{2} \times 5+5^{2} \times 6\right)=\left[\frac{324}{30} \text { or } 10.8\right]$ | M1 |
|  |  | M1; A1 <br> (3) |
| (d) | $\begin{aligned} & \mathrm{E}(W)=\mathrm{E}(Y) \Rightarrow a \mathrm{E}(X)+b \quad[=\mathrm{E}(W) \text { or } \mathrm{E}(Y) \text { or "3" }] ; \text { i.e. " } 13 " a+b=" 3 " \\ & \operatorname{Var}(W)=\operatorname{Var}(Y) \Rightarrow a^{2} \times " 5 "=" 1.8^{"} ; \quad \text { so } a=\frac{3}{5} \underline{\text { or }} \underline{\mathbf{0 . 6}} \end{aligned}$ | $\begin{aligned} & \mathrm{M} 1 ; \mathrm{A} 1 \mathrm{ft} \\ & \mathrm{M} 1 ; \mathrm{A} 1 \end{aligned}$ |
|  | $b=\underline{-4.8}$ | A1 |
| (e) | Values of $w$ are: $10 \times$ " 0.6 " $-4.8 "=1.2$ or 2.4 or 3.6 or 4.8 i.e. all non integers $[$ So no cases are possible when $W=Y$ so $\overline{\mathrm{P}}(W=\bar{Y})]=\underline{\mathbf{0}}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ |
|  |  | (2) <br> [16 marks] |
|  | Notes |  |
| (a) | B1 for "uniform" but if they say "continuous uniform" B0 |  |
| (b)(i) | For all parts, correct answer with no incorrect working seen scores ful B1 for 13 | marks |
| (ii) | M1 for a fully correct expression, can ft their 13 May use $\mathrm{E}(X-\mu)^{2}=\frac{3^{2} \times 2+1^{2} \times 2}{4}$ <br> A1 for 5 | $\times 2$ |
| (c)(i) | M1 for an attempt at $\mathrm{E}(Y)$ with at least 3 correct products seen |  |
| (ii) | $1^{\text {st }} \mathrm{M} 1$ for an attempt at $\mathrm{E}\left(Y^{2}\right)$ with at least 3 correct products seen or 10.8 o.e. <br> $2^{\text {nd }} \mathrm{M} 1$ for correct expression for $\operatorname{Var}(Y)(\mathrm{ft}$ their 10.8 and 3$)[\mathrm{NB} \operatorname{Var}(Y)=\ldots=$ <br> A1 for 1.8 (or exact equivalent) | 0.8 M1M0] |
| $\mathrm{E}(X-\mu)^{2}$ | May see $0 \times \frac{6}{30}+1 \times\left(\frac{9}{30}+\frac{5}{30}\right)+2^{2} \times\left(\frac{4}{30}+\frac{6}{30}\right)$ if in doubt send to review. |  |
| (d) | $1^{\text {st }} \mathrm{M} 1$ for correct use of $\mathrm{E}(a X+b)$ formula i.e. $a \mathrm{E}(X)+b$ or " 13 " $a+b$ <br> $1^{\text {st }} \mathrm{A} 1 \mathrm{ft}$ for a correct equation in $a$ and $b \mathrm{ft}$ their $\mathrm{E}(X)$ and their $\mathrm{E}(Y)$ <br> $2^{\text {nd }} \mathrm{M} 1$ for correct use of $\operatorname{Var}(Y)=\operatorname{Var}(a X+b)$ formula with their $\operatorname{Var}(X)$ and the <br> $2^{\text {nd }} \mathrm{A} 1$ for $a=0.6$ or exact equivalent <br> $3^{\text {rd }} \mathrm{A} 1$ for $b=-4.8$ or exact equivalent | $\text { eir } \operatorname{Var}(Y)$ |
| (e) | M1 for a clear attempt to find all possible values of $w$ ( ft their values of $a$ and $b$ and $w$ values needn't be correct) or state that no integer values for $w$ (if this is true) Can ft their values of $a$ and $b$ even if the values for $w$ are integers <br> A1 for an answer of 0 provided it's true for their $a$ and $b$ (which may be incorrect) |  |


| Question <br> Number | Scheme | Marks |
| :---: | :---: | :---: |
| 5 (a) | Positive (correlation) or e.g. "salary $(y)$ increases as performance $(x)$ increases" <br> [NB "Positive skew" is B0] | B1 (1) |
| (b)(i) | $19428-\frac{465 \times 562}{15} \text { or } 19428-\frac{261330}{15}=2006\left(^{*}\right)$ | B1cso (1) |
| (ii) | $\left[\mathrm{S}_{y y}=\right] \quad 23140-\frac{562^{2}}{15}$ | M1 |
|  | $=2083.7333 \ldots$ awrt $\underline{\mathbf{2 0 8 0}}$ | A1 (2) |
| (c) | $[r=] \frac{2006}{\sqrt{2492 \times " 2083.73 . . "}} ;=0.8803104 \ldots \quad \text { awrt } \underline{\mathbf{0 . 8 8 0}}$ | M1;A1 |
|  |  | (2) |
| (d) | Is consistent and the points on the scatter diagram lie close to a straight line or $r$ is close to 1 or strong/high (positive) correlation (o.e.) | B1 |
|  |  | (1) |
| (e) | $b=\frac{2006}{2492} ;=0.80[497 \ldots] ; a=37.46 \ldots-" b " \times 31[=12.512 \ldots]$ | M1;A1;M1 |
|  | $y=12.5+0.805 x$ | A1 (4) |
| (f) | An increase of $\underline{1}$ (performance) point gives an extra $£ 800(1 \mathrm{sf})$ in salary (o.e.) | B1 (1) |
| (g) | Line must cross $\boldsymbol{x}=\mathbf{9}$ and $\boldsymbol{x}=50$ to score either of these marks <br> Line for 9~50 Intercept (extend line if necessary) at "12.5" (accept 11.5~13.5) | B1 ft |
|  | Line for $9 \sim 50$ At $x=50 y=52.8$ (accept 52~54) | B1 (2) |
| (h) | For the point ( 25,48 ) circled. (If more than one of the given points circled B0) | B1 (1) |
| (i) | " 12.5 " $+30 \times 0.805$ " [=36~37] or allow 2 sf from their diagram <br> Salary of awrt (£) $\underline{\mathbf{3 6} \mathbf{7 0 0}}$ (or 36.7 thousands) | M1 <br> A1 (2) <br> [17 marks] |
|  | Notes |  |
| (b)(i) | B1 for correct expression, all correct values must be seen (either of the printed | xpressions) |
| (ii) | Correct answers to parts (b)(ii), (c), (e) \& (i) with no incorrect working score <br> M1 for a correct expression <br> A1 for awrt 2080 (expect to see 2084 but allow 31256 ) | full marks |
| (c) | M1 for a correct expression but ft their $\mathrm{S}_{y y} \neq 23140$ or answer only of 0.88 <br> A1 for awrt 0.880 (accept 0.88 from a correct expression with $S_{y y}=[2083 \sim 20$ | 84]) |
| (d) | B1 [no ft] for "yes" (o.e.) and a suitable reason based on scatter diagram or | lue of $r$ |
| (e) | $1^{\text {st }} \mathrm{M} 1$ for a correct expression for $b \quad 1^{\text {st }} \mathrm{A} 1$ for $b=0.80$ or better (allow $\frac{1003}{1246} \mathrm{~b}$ $2^{\text {nd }} \mathrm{M} 1$ for a correct expression for $a$ (allow $\frac{562}{15}$ for $37.46 \ldots$ and $\frac{465}{15}$ for 31 ) $2^{\text {nd }} \mathrm{A} 1$ for correct equation in $y$ and $x$ with $b=$ awrt 0.805 and $a=$ awrt 12.5 (no frat | not $\frac{2006}{2492}$ ) <br> ractions) |
| (f) | B1 for a comment mentioning their value in $£$ of $b \times 1000$ (awrt 1 sf ) per perform Condone use of \$ rather than $£$ | ance point |
| (g) | $1^{\text {st }} \mathrm{B} 1 \mathrm{ft}$ for correct intercept for their line $( \pm 1) 2^{\text {nd }} \mathrm{B} 1$ for $y=52 \sim 54$ when $x=50$ |  |
| (i) | M1 for using $x=30$ in their equation ft their $a$ and $b$ to any accuracy <br> A1 for awrt 36700 (Answer only of awrt 37000 can score M1A0) |  |



\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Question \\
Number
\end{tabular} \& Scheme \& Marks \\
\hline \multirow[t]{9}{*}{6. (a)} \& \begin{tabular}{l}
Centre of the disc must land at least 1 cm from each side of the rectangle i.e. inside a rectangle 3 cm long and 1 cm wide \\
Probability disc lies inside rectangle is \(\frac{3 \times 1}{5 \times 3}=\frac{1}{5}\) or \(1-\frac{2(1 \times 5+1 \times 1)}{5 \times 3}(\mathrm{oe})\) (*)
\end{tabular} \& M1
dM1

A1cso <br>

\hline \& $$
\begin{aligned}
{\left[\sigma_{x}=\right] \sqrt{\frac{295}{15}-\left(\frac{61}{15}\right)^{2}} \text { or } \sqrt{3.1288 \ldots} } & \\
& =1.768866 \ldots \text { awrt } \mathbf{1 . 7 7}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$
\] <br>

\hline \& $$
\begin{aligned}
& \bar{y}=3.5 \Rightarrow \sum y=42, \text { so new } \sum z=42+61[=103] \\
& \sigma_{y}=2 \Rightarrow 2^{2}=\frac{\sum y^{2}}{12}-3.5^{2} \text { or } 2=\sqrt{\frac{\sum y^{2}}{12}-3.5^{2}}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { M1, A1 } \\
& \text { M1 }
\end{aligned}
$$
\] <br>

\hline \& \[
$$
\begin{aligned}
& \sum y^{2}=\left(2^{2}+3.5^{2}\right) \times 12[=195] \text { so new } \sum z^{2}=\left(2^{2}+3.5^{2}\right) \times 12+295 \text { [or 490] } \\
& \text { New mean }=\frac{" 103 "}{(15+12)}=[3.8148 \ldots]
\end{aligned}
$$

\] \& | A1 |
| :--- |
| dM1 | <br>

\hline \& \[
$$
\begin{align*}
\text { New standard deviation }= & \sqrt{\frac{490 "}{(12+15)}-" 3.81 \ldots{ }^{\prime 2}}[=1.89613 \ldots] \\
& \text { New mean }=\text { awrt } \underline{\mathbf{3 . 8 1}} \text { new st. dev }=\text { awrt } \underline{\mathbf{1 . 9 0}} \tag{7}
\end{align*}
$$

\] \& | dM1 |
| :--- |
| A1 | <br>

\hline \& Centre of disc must be within 1 cm of a vertex (so 4 quarter circles) \& M1 <br>
\hline \& So probability of disc covering a vertex is $\frac{\pi}{15}$ \& A1 <br>

\hline \& So an estimate for $\pi$ is $15 \times 0.2216=\underline{\mathbf{3 . 3 2 4}}$ \& | A1 |
| :--- |
| (3) |
| [15 marks] | <br>

\hline \& \multicolumn{2}{|l|}{Notes} <br>
\hline \multirow[t]{4}{*}{MR $\begin{array}{lr} & \\ & \\ & \text { (a) } \\ & \text { (b) }\end{array}$} \& \multicolumn{2}{|l|}{$1^{\text {st }}$ M1 accept a suitable diagram showing "winning area" or equivalent in words $2^{\text {nd }}$ dM1 dep on M1 for dimensions of rectangle within which centre must lie (at least 3 or 1 seen) A1 cso for complete explanation with evidence seen for both M1 marks} <br>

\hline \& \multicolumn{2}{|l|}{| M1 for a correct expression including $\sqrt{ }$ allow $\sqrt{3.129}$ or better |
| :--- |
| A1 for awrt 1.77 [exact surd is A0] (allow $s=$ awrt 1.83 [calc: $1.8309508 \ldots$...]) Ans only $\mathbf{2} / \mathbf{2}$ |} <br>


\hline \& | $1^{\text {st }}$ M1 for using mean of 3.5 to get sum of 12 students e.g. $12 \times 3.5$ |
| :--- |
| $1^{\text {st }}$ A1 for a correct sum of $42+61$ or 103 (allow any letter). |
| $2^{\text {nd }}$ M1 for a correct equation for $\sum y^{2}$ (sum of squares for the 12 students). Ans |
| $2^{\text {nd }}$ A1 for correct expression for $\sum z^{2}$ e.g. $=195+295[=490]$ |
| $3^{\text {rd }}$ dM1 dep on $1^{\text {st }}$ M1 for a correct method for finding new mean or awrt 3.81 |
| $4^{\text {th }}$ dM1 dep on $1^{\text {st }}$ and $2^{\text {nd }}$ M1s for a correct method for new st. dev. |
| $3^{\text {rd }} \mathrm{A} 1$ for both mean $=$ awrt 3.81 (or 3.815) and st. dev $=$ awrt 1.90 | \& ny letter <br>

\hline \& \multicolumn{2}{|l|}{M1 for explanation or diagram showing possible region for centre is a full circl $1^{\text {st }} \mathrm{A} 1$ for the correct probability. Allow M1A1 for $\frac{\pi}{15}$ (o.e.) but must be in part (d) $2^{\text {nd }}$ A1 dep on M1 for estimate of 3.324 (accept 3.32 if M1A1 clearly scored)} <br>
\hline
\end{tabular}



